









Advanced performance products for laser scientists and engineers.

LaserDiodeSource.com | LaserDiodeControl.com

## **TECHNICAL SUPPORT & SALES IN NORTH AMERICA**

800.887.5065 contact@LaserLabSource.com



# Datasheet TEC Controller TEC-1161-4A TEC Controller TEC-1161-10A





# **Support / First Steps**

Meerstetter Engineering provides technical support for all products and helps you to integrate a product into your solution. Most of your questions should be solved by reading the provided <u>user manuals</u> of the corresponding product or the <u>FAQ</u> (frequently asked questions).

For further help or if you have any other questions, please do not hesitate to contact us. We are happy to help you. You can contact us by email <a href="mailto:support@meerstetter.ch">support@meerstetter.ch</a>.

## **Meerstetter's Product Family Compatibility**

The Meerstetter LDD- and TEC-Families have been developed to work along with each other. They share the same platform bus, communication protocol and hardware architecture. See the following table for an overview of the LDD- and TEC-Families.

| LDD-Family   |                     |                                              |
|--------------|---------------------|----------------------------------------------|
| LDD-1321     | 0-1.5 A / 0-14 V    | CW, Add on TEC Controller available          |
| LDD-1301     | 0-20 A / 0.5-45 V   | 1 ms - CW                                    |
| LDD-1303     | 0-20 A / 1-120 V    | 1 ms - CW                                    |
| LDD-1137     | 0-75 A / 0-70 V     | 0.5 µs - CW, modulated, QCW and pulsed modes |
| LDD-1124-SV  | 0-1.5 A / 0-15 V    | 1 μs - CW, modulated, QCW and pulsed modes   |
| LDD-1121-SV  | 0-15 A / 0-15 V     | 1 μs - CW, modulated, QCW and pulsed modes   |
| LDD-1125-HV  | 0-30 A / 0-27 V     | 1 μs - CW, modulated, QCW and pulsed modes   |
| TEC-Family   |                     |                                              |
| TEC-1092     | ±1.2 A / ±9.6 V     | Micro, single channel                        |
| TEC-1091     | ±4 A / ±21 V        | Small, single channel                        |
| TEC-1089-SV  | ±10 A / ±21 V       | Medium, single channel                       |
| TEC-1162     | ±5 A / ±56 V        | Medium-high, single channel                  |
| TEC-1090-HV  | ±16 A / ±30 V       | Large, single channel                        |
| TEC-1163     | ±25 A / ±56 V       | Extra-large, single channel                  |
| TEC-1161-4A  | 2 x (±4 A / ±21 V)  | Small, dual channel                          |
| TEC-1161-10A | 2 x (±10 A / ±21 V) | Medium, dual channel                         |
| TEC-1122-SV  | 2 x (±10 A / ±21 V) | Medium, dual channel                         |
| TEC-1166     | 2 x (±5 A / ±56 V)  | Medium-high, dual channel                    |
| TEC-1123-HV  | 2 x (±16 A / ±30 V) | Large, dual channel                          |
| TEC-1167     | 2 x (±25 A / ±56 V) | Extra-large, dual channel                    |



TEC Controller / Peltier Driver up to ±10 A / up to ±21V

**TEC-1161**HW v1.20 / v1.21

#### **OEM TEC Controller**



#### **Description:**

The TEC-1161 is a specialized TEC Controller / power supply able to precision-drive two Peltier elements.

Each channel features a true bipolar DC current source for cooling / heating, six temperature monitoring inputs (2x high resolution, 4x low resolution) and intelligent PID control with auto tuning. The TEC-1161 is fully digitally controlled, it's hard- and firmware offer numerous communication and safety options.

The included PC-Software allows configuration, control, monitoring, and live diagnosis of the TEC Controller via USB and RS485. All parameters can be saved to non-volatile memory.

For the most straightforward applications, only a power supply, Peltier elements and at least one temperature sensor need to be connected to the TEC-1161. After power-up the unit will operate according to preconfigured values. (In stand-alone mode no control interface is needed.)

The TEC-1161 can handle either Pt100, Pt1000, NTC or Voltage temperature probes. For highest precision and stability applications a Pt100 / 4-wire input configuration is recommended. Analog measurement circuit is factory calibrated.

Low resolution temperature inputs allow the connection of NTC probes that are located on the heat sinks of the Peltier elements. This additional data is used to compensate for parasitic thermal conduction of Peltier elements. Also, it allows the control of external heat sink cooling fans.

The heating and cooling power is optimized by proprietary thermal management routines based on power balance models (for Peltier elements and resistive heaters).

The TEC-1161 two independent channels may also be operated in parallel to either drive two individual or one common load (current doubling).

Further functionality includes: Smooth temperature ramping, thermal stability indication and auto gain (NTC probes). The PC-Software allows data logging and configuration import/export.

#### **Features**

#### Input Characteristics:

• DC Input Voltage: 5 to 24 V

#### **Output Characteristics:**

Voltage: up to ± 21 VCurrent: up to ± 10 A

#### **Main Features:**

- Temperature Sensor Types: Pt100, Pt1000, NTC, Voltage
- Temperature Precision / Stability: <0.01 °C
- Temperature Control & Measurement Frequency: 1 Hz, 10 Hz, 90 Hz
- Communication bus compatible
- Configuration / Diagnosis over all communication interfaces with PC Software
- PCB mountable version available
- Measurement Inputs freely assignable to any Output Channel
- Bipolar output channels can be split into unipolar channels

#### **Operation Modes:**

- Stand-alone operation
- Remote-controlled over USB, CAN, RS485, I/O
- Script-controlled over lookup table (thermal cycling)

#### **Driver Modes:**

- DC power supply (bipolar)
- Temperature control: PID settings, auto tuning, optional cool/heat-only or resistor heating modes

#### **Data Interfaces:**

USB

1

- RS485 (Half-Duplex)
- CANopen CiA 301

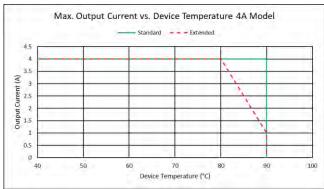
#### **General Purpose I/O Features:**

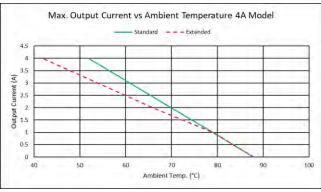
- Configurable as input to control TEC-1161 (Enable, Temperature up / down etc.)
- Configurable as output to monitor TEC-1161 (Error Indication, Temperature Stable Indication etc.)

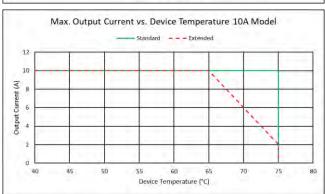
#### **Special Requirements / More Information:**

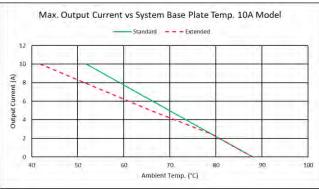
Please contact us for additional information or customization.




TEC Controller / Peltier Driver up to ±10 A / up to ±21V


**TEC-1161**HW v1.20 / v1.21

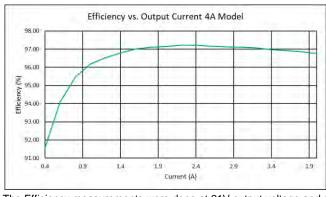

| Absolute Maximum Ratings |        |  |  |  |
|--------------------------|--------|--|--|--|
| Supply voltage (DC)      | 25.5 V |  |  |  |

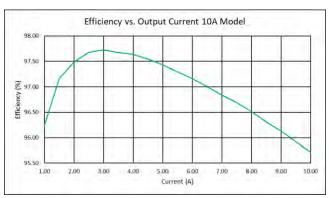

| Operating Ratings |                          |
|-------------------|--------------------------|
| Temperature       | -40 – 90 °C              |
| Humidity          | 5 – 95 %, non-condensing |

# **Operating Characteristics**








Standard or Extended Device Temperature Mode can be set as software setting.

The right Diagram shows the situation with an external  $3.3\Omega$  resistor (4A Model) or a  $1.65\Omega$  resistor (10A Model). No forced air flow was present.

# **Efficiency**





The Efficiency measurements were done at 21V output voltage and a device temperature of 60°C. The ambient temperature was 23°C, no forced air flow was present.

TEC Controller / Peltier Driver up to ±10 A / up to ±21V

**TEC-1161**HW v1.20 / v1.21

#### **Electrical Characteristics 4A Model**

Unless otherwise noted:  $T_A$  = 25 °C,  $U_{IN}$  = 24 V,  $R_{load}$  = 3.3  $\Omega$ 

| Symbol                  | Parameter                 | Test Conditions / Hints                            | Min | Тур | Max | Units     |
|-------------------------|---------------------------|----------------------------------------------------|-----|-----|-----|-----------|
| DC Power S              | upply Input:              |                                                    |     |     |     |           |
| U <sub>IN</sub>         | Supply voltage            | Measured directly on power input terminals         | 4.9 |     | 24  | V         |
| U <sub>IN</sub> Ripple  | Ripple tolerance          | UIN never below UIN min or above UIN max           |     |     | 300 | $mV_{PP}$ |
| I <sub>IN</sub>         | Max input current         | Hint: Software limitation                          |     |     | 10  | Α         |
| Output (per             | Channel):                 |                                                    |     |     |     |           |
| Гоит                    | Bipolar current           |                                                    |     |     | ±4  | Α         |
| U <sub>OUT</sub>        | Bipolar voltage           | U <sub>OUT</sub> is maximum ~0.9 * U <sub>IN</sub> |     |     | ±21 | V         |
| I <sub>OUT</sub>        | Unipolar current 1        |                                                    |     |     | 4   | Α         |
| U <sub>OUT</sub>        | Unipolar voltage 1        | U <sub>OUT</sub> is maximum ~0.9 * U <sub>IN</sub> |     |     | 21  | V         |
| U <sub>OUT</sub> Ripple | Voltage ripple            | @ 4 A                                              |     |     | 100 | $mV_{PP}$ |
| System Cha              | racteristics:             |                                                    |     |     |     |           |
| η50%                    | Power efficiency          | @ 50 % load (10.5 V, 4 A)                          |     | 94  |     | %         |
| η100%                   | Power efficiency          | @ 100 % load (21 V, 4 A)                           |     | 96  |     | %         |
| Output Mon              | itoring: (Iout Resolution | on is 1.46 mA; UouT Resolution is 6.1 mV)          |     |     |     |           |
| lou⊤ Read               | Precision                 | @ 3.8 A                                            |     | 1   | 5   | %         |
| Uout Read               | Precision                 | @ 15.0 V                                           |     | 1   | 3   | %         |

#### **Electrical Characteristics 10A Model**

Unless otherwise noted:  $T_A = 25$  °C.  $U_{IN} = 24$  V.  $R_{load} = 1.65 \Omega$ 

| Symbol                 | Parameter                | Test Conditions / Hints                            | Min | Тур | Max | Units     |
|------------------------|--------------------------|----------------------------------------------------|-----|-----|-----|-----------|
| DC Power S             | upply Input:             |                                                    |     |     |     |           |
| U <sub>IN</sub>        | Supply voltage           | Measured directly on power input terminals         | 4.9 |     | 24  | V         |
| U <sub>IN</sub> Ripple | Ripple tolerance         | UIN never below UIN min or above UIN max           |     |     | 300 | $mV_{PP}$ |
| I <sub>IN</sub>        | Max input current        | Hint: Software limitation                          |     |     | 22  | Α         |
| Output (per            | Channel):                |                                                    |     |     |     |           |
| Гоит                   | Bipolar current          |                                                    |     |     | ±10 | Α         |
| Uouт                   | Bipolar voltage          | U <sub>OUT</sub> is maximum ~0.9 * U <sub>IN</sub> |     |     | ±21 | V         |
| louт                   | Unipolar current 1       |                                                    |     |     | 10  | Α         |
| Uout                   | Unipolar voltage 1       | U <sub>OUT</sub> is maximum ~0.9 * U <sub>IN</sub> |     |     | 21  | V         |
| Uout Ripple            | Voltage ripple           | @ 10 A                                             |     |     | 350 | $mV_{PP}$ |
| System Cha             | racteristics:            |                                                    |     |     |     |           |
| η <sub>50%</sub>       | Power efficiency         | @ 50% load (10.5 V, 10 A)                          |     | 93  |     | %         |
| η100%                  | Power efficiency         | @ 100% load (21 V, 10 A)                           |     | 95  |     | %         |
| Output Mon             | itoring (Iout Resolution | on is 3.5 mA; Uout Resolution is 6.1 mV)           |     |     |     |           |
| lou⊤ Read              | Precision                | @ 9.8 A                                            |     | 1   | 5   | %         |
| Uout Read              | Precision                | @ 15.0 V                                           |     | 1   | 3   | %         |

 $<sup>^{1}</sup>$  In unipolar mode, the total output power is doubled in comparison to the bipolar mode, but the controller input current is limited to  $I_{IN}$ , which limits the total available output power. The controller limits the output current for each channel dynamically if the max input current limit is reached.

## **Output Safety Characteristics**

Unless otherwise noted:  $T_A = 25 \,^{\circ}\text{C}$ .  $U_{IN} = 12 \,^{\circ}\text{V}$ 

|                       | Se Hoted. TA = 23 C, ON = 12                             |                            |     |     |     |       |
|-----------------------|----------------------------------------------------------|----------------------------|-----|-----|-----|-------|
| Symbol                | Parameter                                                | Test Conditions / Hints    | Min | Тур | Max | Units |
| <b>Output Sta</b>     | ge Protection Delays:                                    |                            |     |     |     |       |
| toff                  | Short circuit                                            | Full load condition        |     | 10  | 30  | μS    |
| toff                  | Power system limits                                      | Current and voltage limits |     |     | 200 | μS    |
|                       | ge Current Supervision<br>nd OUT- currents differ too mu |                            |     |     |     |       |
| I <sub>OUT_DIFF</sub> | Error threshold                                          |                            |     | 120 |     | mΑ    |

Document Number: 5231G (14 October 2024)



TEC Controller / Peltier Driver up to ±10 A / up to ±21V

TEC-1161 HW v1.20 / v1.21

#### **High Resolution Temperature Measurement Characteristics (NTC Probes)**

NTC thermistor resistive input characteristics translate into temperature ranges valid for only one type of NTC probe. Below example is given in the case of an NTC  $B_{25/100}$  3988K  $R_{25}$  10k temperature sensor.

| Symbol     | Parameter          | Test Conditions / Hints         | Min | Тур         | Max | Units |
|------------|--------------------|---------------------------------|-----|-------------|-----|-------|
| D          | ADC Auto Gain      |                                 | 73  |             | 1M  | Ω     |
| KHR, RANGE | PGA = 1 or 8 or 32 | Corresponding temperature range | 19  | 94.3 to -55 | .5  | °C    |

RHR, RANGE is the resistance range of the NTC sensor

## High Resolution Temperature Measurement Characteristics (Pt100 and Pt1000 Probes)

Measurement configuration = 23 bit / 4-wire / unshielded cable <50 mm

| Symbol                 | Parameter         | Test Conditions / Hints                                                      | Min  | Тур   | Max  | Units |
|------------------------|-------------------|------------------------------------------------------------------------------|------|-------|------|-------|
| THR, RANGE             | Range             | Range is extendable upon request Extended measurement range is -193°C +787°C | -220 |       | +200 | °C    |
| T <sub>HR, PREC</sub>  | Precision         | (EN 60751 / IEC 751)                                                         |      | 0.005 |      | °C    |
| THR, COEFF             | Temp. Coefficient | Relative to device temperature                                               |      |       | 1.6m | °C/K  |
| T <sub>HR, NOISE</sub> | Value Noise       | Reference measurement fluctuations while output stage operating @70% load    |      | 0.005 |      | °C    |
| T <sub>HR</sub> , REP  | Repeatability     | Repeated measurements of reference resistors after up to 3 days              |      | 0.008 |      | °C    |

## High Resolution Temperature Measurement Characteristics (Voltage Measurement VIN1/2)

Sensors with linear Voltage/Temperature output

| Symbol                 | Parameter | Test Conditions / Hints                                             | Min    | Тур | Max   | Units |
|------------------------|-----------|---------------------------------------------------------------------|--------|-----|-------|-------|
| VSENS, DIFF            | Range     | Differential input voltage Temperature range depends on sensor used | -2.039 |     | 2.039 | V     |
| V <sub>HRUx, ABS</sub> | Range     | Absolute input voltage                                              | -0.1   |     | 5.1   | V     |

#### Low Resolution Temperature Measurement Characteristics (NTC only)

T<sub>A</sub> = 25 °C, measurement configuration = 12 bit / 2-wire / unshielded cable <50 mm, °T probe = NTC B<sub>25/100</sub> 3988K R<sub>25</sub> 10k

| Symbol     | Parameter | Test Conditions / Hints          | Min | Тур         | Max   | Units |
|------------|-----------|----------------------------------|-----|-------------|-------|-------|
| Б          | Dongo     |                                  | 50  |             | 49781 | Ω     |
| KLR, RANGE | Range     | Corresponding temperature range: |     | 214 to -8.1 | •     | °C    |

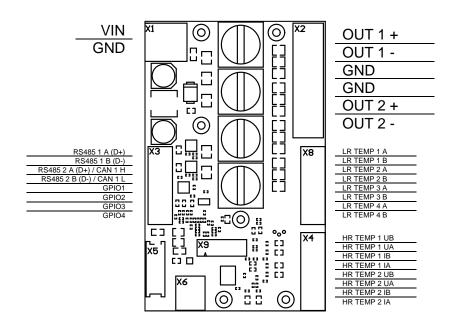
Document Number: 5231G (14 October 2024)

TEC Controller / Peltier Driver up to ±10 A / up to ±21V

**TEC-1161**HW v1.20 / v1.21

# **General Purpose Digital I/O Characteristics (GPIO1 ... GPIO10)**

Unless otherwise noted: T<sub>A</sub> = 25 °C


| Symbol                     | Parameter                     | Test Conditions / Hints | Min      | Тур  | Max  | Units |
|----------------------------|-------------------------------|-------------------------|----------|------|------|-------|
| Input Cha                  | racteristics:                 |                         |          |      |      |       |
| U <sub>IH</sub>            | Logic high input threshold    |                         | 2.38     |      |      | V     |
| U <sub>IL</sub>            | Logic low input threshold     |                         |          |      | 0.93 | V     |
| U <sub>IMAX</sub>          | Maximum input voltage         |                         | -0.5     |      | 5.5  | V     |
| Output Ch<br>(Microprocess | naracteristics:               |                         |          |      |      |       |
| Uон                        | Logic high output voltage     | Output current 8 mA     | 2.8      |      | 3.3  | V     |
| Uol                        | Logic low output voltage      | Input current 8 mA      |          |      | 0.4  | V     |
| Zout                       | Output Impedance              |                         | 110      | 120  | 150  | Ω     |
| louт                       | Output Sink or Source Current |                         |          | ±8   | ±20  | mA    |
| ESD Prote                  |                               |                         | ·        |      |      |       |
| 1                          | ocessor and Connector)        | 15004000 4.0            | <u> </u> | 1 40 | 1    | 1 137 |
| V <sub>PP</sub>            | ESD discharge                 | IEC61000-4-2            |          | 18   |      | kV    |
| RA                         | Series resistance             |                         | 85       | 100  | 115  | Ω     |

# **Auxiliary Connector X5 Power Supply Output Characteristics**

Unless otherwise noted: T<sub>A</sub> = 25 °C

| Symbol           | Parameter             | Test Conditions / Hints | Min  | Тур | Max | Units |  |  |  |  |
|------------------|-----------------------|-------------------------|------|-----|-----|-------|--|--|--|--|
| Input Cha        | racteristics:         |                         |      |     |     |       |  |  |  |  |
| U <sub>оит</sub> | Output voltage        | Output current 50 mA    | 4.4  | 4.5 | 5   | V     |  |  |  |  |
| louт             | Output current        |                         | 0    | 150 | 200 | mA    |  |  |  |  |
| UIMAX            | Maximum input voltage |                         | -0.5 |     | 5.5 | V     |  |  |  |  |

## **Pin Configuration Screw Connectors TOP View**



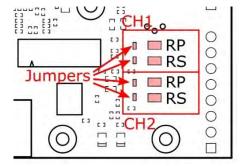
**TEC-1161** 

TEC Controller / Peltier Driver up to ±10 A / up to ±21V

HW v1.20 / v1.21

#### **Matching Receptacles for the PIN Configuration**

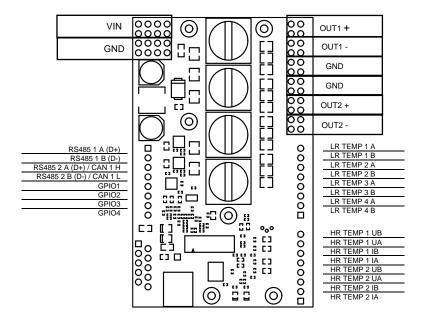
The following receptacles can be used for the TEC-1161 in the -PIN Configuration: Manufacturer: MILL-MAX MANUFACTURING Part Number: 801-43-050-10-001000 The receptacles need to be broken up into the appropriate length.


#### **Screw Connector Specifications X1 and X2**

| Parameter                                                              | Min  | Тур | Max | Units |
|------------------------------------------------------------------------|------|-----|-----|-------|
| Wire Size (Mechanical Limit, current carrying capacity not considered) | 0.05 |     | 2.5 | mm²   |
| Torque                                                                 |      | 0.5 | 0.6 | Nm    |
| Stripping Length                                                       |      | 6.5 |     | mm    |

#### Screw Connector Specifications X3, X4 and X8

| Parameter                                                              | Min  | Тур | Max | Units           |
|------------------------------------------------------------------------|------|-----|-----|-----------------|
| Wire Size (Mechanical Limit, current carrying capacity not considered) | 0.05 |     | 0.5 | mm <sup>2</sup> |
| Torque                                                                 |      | 0.1 |     | Nm              |
| Stripping Length                                                       |      | 5   |     | mm              |

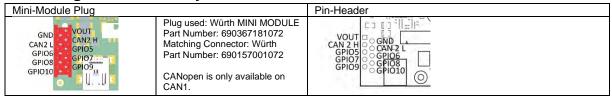

## Temperature Sensor Connection X4 and X8



The jumpers are used for the 2/4 Wire configuration. For the values of RS and RP please refer to the TEC-Controller User Manual.

Document Number: 5231G (14 October 2024)

## **Pin Configuration Pinheader Connectors TOP View**



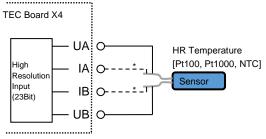

**TEC-1161** 

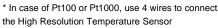
TEC Controller / Peltier Driver up to ±10 A / up to ±21V

HW v1.20 / v1.21

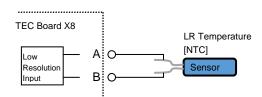
## **Pin Configuration Auxiliary IO Connector X5**




#### Mini USB Connector X6


The Mini USB Connector X6 can be used to communicate with the TEC Controller using the meCom communications protocol or the software. It is electrically isolated.

# **Display Connector X9**


The Connector X9 can be used to connect one of the OLED Displays available from Meerstetter (DPY-1113, DPY-1114 or DPY-1115).

#### **Temperature Sensor Connection X4 and X8**

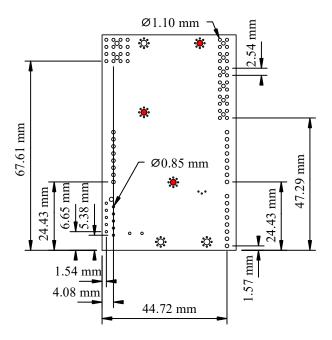




Further information can be found here.



**TEC-1161** 


TEC Controller / Peltier Driver up to ±10 A / up to ±21V

HW v1.20 / v1.21

## **Dimensions**

Top View





The holes marked in red are used to mount the aluminum baseplate for the 10A version and are therefore not available for mounting purposes in this version.

TEC Controller / Peltier Driver up to ±10 A / up to ±21V

TEC-1161

HW v1.20 / v1.21

# **Operation Modes / Theory of Operation**

The TEC-1161 is an OEM precision TEC Controller that is available with Screw Terminals or as a PCB mountable device. Its basic operation status is visually indicated by on-board green and red LEDs and their blinking pattern.

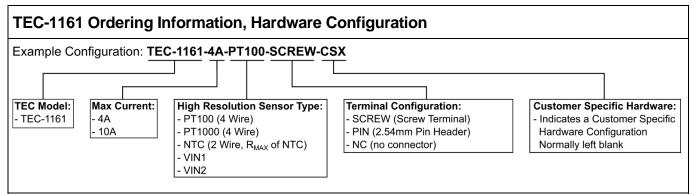




SCREW Screw terminal equipped Version

PIN PCB mountable Version

Document Number: 5231G (14 October 2024)


Status information can be polled at any time by industry standard RS485 connection or by USB (see box below). The TEC-1161 can also operate in a remotely controlled manner, with parameters adjusted on the fly. Scripting capability by sequential lookup table read-out is supported.

Configured as a DC power-supply, the TEC-1161 can handle current and voltage settings. In the remote-control case, temperature data may be passed on to be processed by the host.

Configurable parameters further include sensor linearization (Pt100 / Pt1000) and Steinhart-Hart modeling (NTC), temperature acquisition hardware calibration, Peltier element modeling, PID controller auto tuning, nominal temperature ramping, current, voltage and temperature limits, error thresholds, etc. Please refer to the TEC Controller User Manual (Document 5216) for further information.

TEC-1161

TEC Controller / Peltier Driver up to ±10 A / up to ±21V HW v1.20 / v1.21



#### High Resolution Sensor Type:

NTC: By default, we mount an NTC1M. If you require an older version (NTC18K, NTC39K or NTC56K), please write which one you need in the comment section of your order or contact us: contact@meerstetter.ch.

#### Thermocouple:

To use our TEC Controllers with thermocouples type K, you need a TCI-1181 in addition to the TEC Controller with a VIN1 or VIN2 High Resolution Sensor Type configuration.

#### Display Unit:

It is possible to connect a small or big OLED 2x16 / 4x20 character display directly to the X9 connector of the device. Please visit the DPY-111x product pages on our website for further information.

#### Customization:

Many hardware and software features of the TEC-1161 are customizable upon request. Please contact Meerstetter Engineering with your enquiry.

Meerstetter Engineering GmbH Schulhausgasse 12 3113 Rubigen, Switzerland



Phone: +41 31 529 21 00 Email: contact@meerstetter.ch Website: www.meerstetter.ch

Document Number: 5231G (14 October 2024)

Meerstetter Engineering GmbH (ME) reserves the right to make changes without further notice to the product described herein. Information furnished by ME is believed to be accurate and reliable. However typical parameters can vary depending on the application and actual performance may vary over time. All operating parameters must be validated by the customer under actual application conditions.



**TEC-1161** 

TEC Controller / Peltier Driver up to ±10 A / up to ±21V

HW v1.20 / v1.21

# **Change History**

| Date of change  | Version | Changed/<br>Approved | HW-<br>Version   | Change / Reason                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------|---------|----------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14 October 2024 | G       | XF / ML              | v1.20 /<br>v1.21 | <ul> <li>Add: Change History</li> <li>Add: New Main Feature: Measurement Inputs are freely assignable to any Output Channel</li> <li>Add: New Main Feature: Bipolar output channels can be split into unipolar channels</li> <li>Add: "Unipolar current per channel" and "Unipolar voltage per channel" specifications in "Electrical Characteristics" section</li> <li>Add: Max Input Current (I<sub>IN</sub>) specification in Electrical Characteristics section</li> <li>Del: "Important note" regarding GPIO 9/10 and Low resolution temp. measurement 3/4 not being available removed as they are available as of firmware v6.00</li> </ul> |

Document Number: 5231G (14 October 2024)