

Advanced performance products for laser scientists and engineers.

LaserDiodeSource.com | LaserDiodeControl.com

TECHNICAL SUPPORT & SALES IN NORTH AMERICA

800.887.5065 contact@LaserLabSource.com

Datasheet – TEC Controller TEC-1163 (±25 A / ±56 V)

Support / First Steps

Meerstetter Engineering provides technical support for all products and helps you to integrate a product into your solution. Most of your questions should be solved by reading the provided <u>user manuals</u> of the corresponding product or the <u>FAQ</u> (frequently asked questions).

For further help or if you have any other questions, please do not hesitate to contact us. We are happy to help you. You can contact us by email support@meerstetter.ch.

Meerstetter's Product Family Compatibility

The Meerstetter LDD- and TEC-Families have been developed to work along with each other. They share the same platform bus, communication protocol and hardware architecture. See the following table for an overview of the LDD- and TEC-Families.

LDD-Family		
LDD-1321	0-1.5 A / 0-14 V	CW, Add on TEC Controller available
LDD-1301	0-20 A / 0.5-45 V	1 ms - CW
LDD-1303	0-20 A / 1-120 V	1 ms - CW
LDD-1137	0-75 A / 0-70 V	0.5 μs - CW, modulated, QCW and pulsed modes
LDD-1124-SV	0-1.5 A / 0-15 V	1 μs - CW, modulated, QCW and pulsed modes
LDD-1121-SV	0-15 A / 0-15 V	1 μs - CW, modulated, QCW and pulsed modes
LDD-1125-HV	0-30 A / 0-27 V	1 μs - CW, modulated, QCW and pulsed modes
TEC-Family		
TEC-1092	±1.2 A / ±9.6 V	Micro, single channel
TEC-1091	±4 A / ±21 V	Small, single channel
TEC-1089-SV	±10 A / ±21 V	Medium, single channel
TEC-1162	±5 A / ±56 V	Medium-high, single channel
TEC-1090-HV	±16 A / ±30 V	Large, single channel
TEC-1163	±25 A / ±56 V	Extra-large, single channel
TEC-1161-4A	2 x (±4 A / ±21 V)	Small, dual channel
TEC-1161-10A	2 x (±10 A / ±21 V)	Medium, dual channel
TEC-1122-SV	2 x (±10 A / ±21 V)	Medium, dual channel
TEC-1166	2 x (±5 A / ±56 V)	Medium-high, dual channel
TEC-1123-HV	2 x (±16 A / ±30 V)	Large, dual channel
TEC-1167	2 x (±25 A / ±56 V)	Extra-large, dual channel

TEC Controller / Peltier Driver up to ±25 A / up to ±56 V

TEC-1163

HW v1.20

OEM TEC Controller

Description:

The TEC-1163 is a specialized TEC Controller/power supply able to precision-drive one Peltier element.

It features a true bipolar DC current source for cooling / heating, three temperature monitoring inputs (1x high resolution, 2x low resolution) and intelligent PID control with auto tuning. The TEC-1163 is fully digitally controlled, it's hard- and firmware offer numerous communication and safety options.

The included PC-Software allows configuration, control, monitoring and live diagnosis of the TEC Controller via USB, RS232 TTL and RS485. All parameters can be saved to non-volatile memory.

For the most straightforward applications, only a power supply, a Peltier element and at least one temperature sensor need to be connected to the TEC-1163. After power-up the unit will operate according to pre-configured values. (In stand-alone mode no control interface is needed.)

The TEC-1163 can handle either Pt100, Pt1000, NTC or Voltage temperature probes. For highest precision and stability applications a Pt100 / 4-wire input configuration is recommended. Analog measurement circuit is factory calibrated.

Low resolution temperature inputs allow the connection of NTC probes that are located on the heat sinks of the Peltier elements. This additional data is used to compensate for parasitic thermal conduction of Peltier elements. Also, it allows the control of external heat sink cooling fans.

The heating and cooling power is optimized by proprietary thermal management routines based on power balance models (for Peltier elements and resistive heaters).

Further functionality includes: Smooth temperature ramping, thermal stability indication and auto gain (NTC probes). The PC-Software allows data logging and configuration import/export.

Features

Input Characteristics:

DC Input Voltage: 11.5 to 63 V

Output Characteristics:

Voltage: up to ± 56 VCurrent: up to ± 25 A

Main Features:

- Temperature Sensor Types: Pt100, Pt1000, NTC, Voltage
- Temperature Precision / Stability: < 0.01 °C
- Temperature Control & Measurement Frequency:
 1 Hz, 10 Hz, 90 Hz
- Communication bus compatible
- Configuration / Diagnosis over all communication interfaces with PC Software
- Measurement Inputs freely assignable to any Output Channel
- Bipolar output channel can be split into unipolar channels

Operation Modes:

- Stand-alone operation
- Remote-controlled over USB, RS485 (Half-Duplex), RS232 TTL, CANopen CiA 301, I/O
- Script-controlled over lookup table (thermal cycling)

Driver Modes:

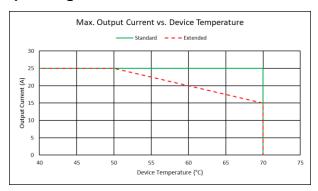
- DC power supply (bipolar)
- Temperature control: PID settings, auto tuning, optional cool/heat-only or resistor heating modes

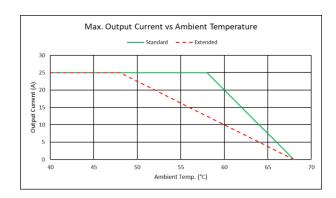
Special Requirements / More Information:

Please contact us for additional information or customization.

TEC-1163

TEC Controller / Peltier Driver up to ±25 A / up to ±56 V

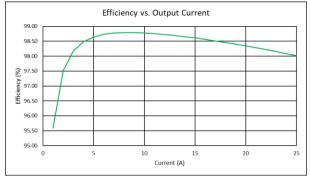

HW v1.20

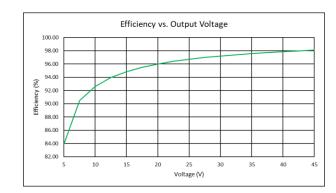

General Characteristics

Absolute Maximum Rati	ngs
Supply voltage (DC)	70V

Operating Ratings	
Temperature	-40 – 70°C
Humidity	5 – 95 %
Tidifficity	non-condensing

Operating Characteristics





Note:

Standard or Extended Device Temperature Mode can be set as software setting. No forced air flow was present.

Efficiency

Note:

The Efficiency measurements were done at 48 V input voltage, an output voltage of 44 V, an output current of 25 A and a base plate temperature of 60°C unless otherwise noted. The ambient temperature was 23°C, no forced air flow was present.

TEC Controller / Peltier Driver up to ±25 A / up to ±56 V

TEC-1163 HW v1.20

Electrical Characteristics

Unless otherwise noted: T_A = 25 °C, U_{IN} = 48 V

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
DC Power	Supply Input:					
U _{IN}	Supply voltage	Measured directly on power input terminals	11.5		63	V
U _{IN Ripple}	Ripple tolerance	U _{IN} never below U _{IN} min or above U _{IN} max			300	mV_{PP}
I _{IN}	Max input current	Hint: Software limitation			27	Α
Output (pe	r Channel):					
Гоит	Bipolar current				±25	Α
Uouт	Bipolar voltage	U _{OUT} is maximum ~0.90 * U _{IN}			±56	V
louт	Unipolar current 1				25	Α
Uouт	Unipolar voltage 1	U _{OUT} is maximum ~ 0.90 * U _{IN}			56	V
UOUT Ripple	Voltage ripple	@ 25 A			120	mV_{PP}
System Ch	aracteristics:					
η50%	Power efficiency	@ 50% load (28 V, 25 A)		93		%
η100%	Power efficiency	@ 100% load (56 V, 25 A)		95		%
Output Mo	nitoring: (Io∪⊤ Resoluti	on is 18.3 mA; U _{OUT} Resolution is 17.6 mV)				
OUT Read	Precision	@ 24 A		1	5	%
UOUT Read	Precision	@ 30.0 V		1	3	%

Output Safety Characteristics

Unless otherwise noted: T_A = 25 °C, U_{IN} = 48 V

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units			
Output Stage Protection Delays:									
toff	Short circuit	Full load condition		10	30	μs			
toff	Power system limits	Current and voltage limits			200	μs			
	Output Stage Current Supervision: (If the OUT+ and OUT- currents differ too much, an error is generated)								
I _{OUT_DIFF}	Error threshold			2.5		A			

High Resolution Temperature Measurement Characteristics (NTC Probes)

NTC thermistor resistive input characteristics translate into temperature ranges valid for only one type of NTC probe. Below example is given in the case of an NTC B25/100 3988K R25 10k temperature sensor.

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
D	ADC auto gain		73		1 M	Ω
K HR, RANGE	PGA = 1 or 8 or 32	Corresponding temperature range	194.3 to -55.5		.5	°C

R_{HR, RANGE} is the resistance range of the NTC sensor.

High Resolution Temperature Measurement Characteristics (Pt100 and Pt1000 Probes)

Measurement configuration = 23 bit / 4-wire / unshielded cable <50 mm

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
T _{HR, RANGE}	Range	Range is extendable upon request Extended measurement range is -193 °C +787 °C	-220		+200	°C
THR, PREC	Precision	(EN 60751 / IEC 751)		5		mK
THR, COEFF	Temp. coefficient	Relative to device temperature			1.6	mK/K
T _{HR, NOISE}	Value noise	Reference measurement fluctuations while output stage operating @ 70 % load		5		mK
THR, REP	Repeatability	Repeated measurements of reference resistors after up to 3 days		8		mK

TEC Controller / Peltier Driver up to ±25 A / up to ±56 V

TEC-1163

HW v1.20

High Resolution Temperature Measurement Characteristics (Voltage Measurement VIN1/2)

Sensors with linear Voltage/Temperature output

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Unit s
VSENS, DIFF	Range	Differential input voltage Temperature range depends on sensor used	-2.039		2.039	V
V _{HRUx, ABS}	Range	Absolute input voltage	-0.1		5.1	V

Low Resolution Temperature Measurement Characteristics (NTC only)

T_A = 25 °C, measurement configuration = 12 bit / 2-wire / unshielded cable <50 mm, °T probe = NTC B25/100 3988K R25 10k

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
P. D. DANIOS	Range		83		182413	Ω
KLR, RANGE	Range	Corresponding temperature range		-30 to 187		°C

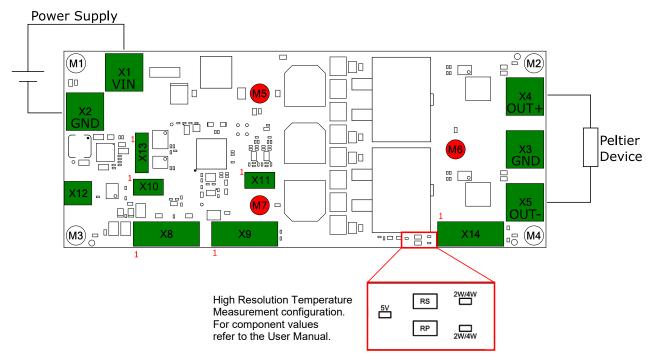
General Purpose Digital I/O Characteristics (GPIO1 ... GPIO10)

Unless otherwise noted: T_A = 25 °C

Symbol	Parameter	Test Conditions / Hints	Min	Тур	Max	Units
	racteristics:					
(Microproces				ı	1	
UıH	Logic high input threshold		2.38			V
U _{IL}	Logic low input threshold				0.93	V
U _{IMAX}	Maximum input voltage		-0.5		5.5	V
Output Ch (Microproces	naracteristics:					
Uон	Logic high output voltage	Output current 8 mA	2.8		3.3	V
U _{OL}	Logic low output voltage	Input current 8 mA			0.4	V
Zouт	Output impedance			50		Ω
l _{out}	Output sink or source current			±8	±20	mA
ESD Prote	ection:					
(Between Pro	cessor and Connector)					
V _{PP}	ESD discharge	IEC61000-4-2		18		kV
RA	Series resistance		85	100	115	Ω

Auxiliary Connector X8, X9, X10 Power Supply Output Characteristics

Unless otherwise noted: T_A = 25 °C


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units			
Input Chara	Input Characteristics:								
Uouт	Output voltage	Output current 50mA	4.4	4.5	5	V			
louт	Output current	Sum of output currents of X8, X9 and X10	0	150	200	mA			
U _{IMAX}	Maximum input voltage		-0.5		5.5	٧			

TEC-1163

TEC Controller / Peltier Driver up to ±25 A / up to ±56 V

HW v1.20

PCB-Overview

Connector X1 - X5

Parameter	Min	Тур	Max	Units
Matching screw		M4x6		
Tightening torque		2.2		Nm

Connector X8, X9, X14 TB (Terminal Block) version

Matching Receptacle: Würth WR-TBL Series 382. Würth Part Number 691381000008. Pin 1 is marked in red.

Parameter	Min	Тур	Max	Units
Wire thickness	0.2		1.5	mm ²

For pinout description: see next paragraph.

Connector X8, X9, X14 CON version

Matching Receptacle: Molex Nano-Fit. Molex Part Number 1053071208. Pin 1 is marked in red.

Pinout Com Connector X8 (TB and CON version)					
PIN 1	+5V	PIN 5	RS232 TTL TX		
PIN 2	GND	PIN 6	RS232 TTL RX		
PIN 3	RS485 1 A/D+	PIN 7	CAN1 H		
PIN 4	RS485 1 B/D-	PIN 8	CAN1 L		

Pinout GPIO Connector X9 (TB and CON version)					
PIN 1	+5V	PIN 5	GPIO 3		
PIN 2	GND	PIN 6	GPIO 4		
PIN 3	GPIO 1	PIN 7	GPIO 5		
PIN 4	GPIO 2	PIN 8	GPIO 6		

Pinout Temp Measurement Connector X14 (TB and CON version)				
PIN 1	HR Temp 1 IA	PIN 5	LR Temp 1 A	
PIN 2	HR Temp 1 IB	PIN 6	LR Temp 1 B	
PIN 3	HR Temp 1 UA	PIN 7	LR Temp 3 A	
PIN 4	HR Temp 1 UB	PIN 8	LR Temp 3 B	

TEC Controller / Peltier Driver up to ±25 A / up to ±56 V

TEC-1163

HW v1.20

Connector X10, X11

Matching Receptacle: Würth Mini Module. Würth Part Number 690157000472. Pin 1 is marked in red.

Pinout Aux Com Connector X10					
PIN 1	+5V	PIN 3	CAN2 H (CAN2 is not available)		
PIN 2	GND	PIN 4	CAN2 L (CAN2 is not available)		

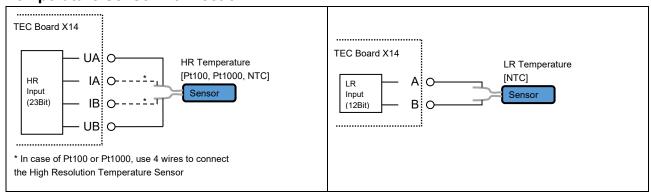
Pinout Aux GPIO Connector X11					
PIN 1	GPIO 7	PIN 3	GPIO 9		
PIN 2	GPIO 8	PIN 4	GPIO 10		

Connector Specifications X12

The Mini USB Connector X12 can be used to communicate with the TEC Controller using the meCom communications protocol or the software. It is electrically isolated.

Connector Specifications X13

The Connector X13 can be used to connect one of the OLED Displays available from Meerstetter (DPY-1113, DPY-1114 or DPY-1115).

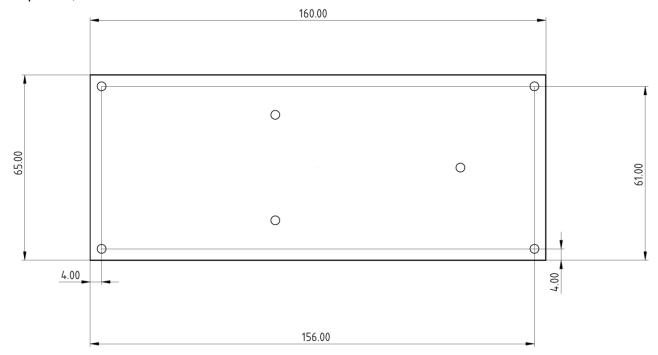

Temperature Measurement Configuration

The Jumpers "2W/4W" are used for the 2 Wire / 4 Wire configuration. For the values of RS and RP please refer to the TEC Controller User Manual.

Mounting Holes M1 – M7

All Mounting holes have a Diameter of 3.05mm. Holes M5-M7 (Marked in red) are used to mount the aluminum base plate to the device and should not be removed.

Temperature Sensor Connection X14


TEC-1163

TEC Controller / Peltier Driver up to ±25 A / up to ±56 V

HW v1.20

Dimensions and Mounting Hole Positions

Top View, all measurements in mm.

Document Number: 5285C (18 October 2024)

TEC-1163

HW v1.20

TEC Controller / Peltier Driver up to ±25 A / up to ±56 V

Operation-Modes / Theory of Operation

The TEC-1163 is an OEM precision TEC Controller that is available with Terminal Blocks and with connectors. Its basic operation status is visually indicated by on-board green and red LEDs and their blinking pattern.

CON locking Connector equipped version

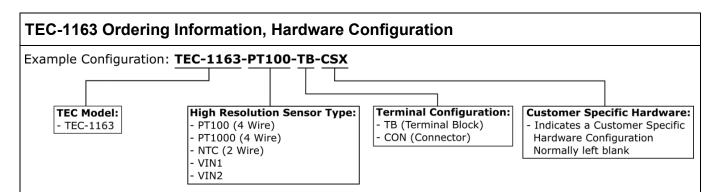
(Best suited for series production)

TB Terminal Block equipped version

(Best suited for prototyping, commissioning, and small series. **Attention**: Counter parts for Terminal Blocks will not be shipped with the device!)

Document Number: 5285C (18 October 2024)

Status information can be polled at any time by industry standard connections RS485, RS232 TTL, CANopen or by USB. The TEC-1163 can also operate in a remotely controlled manner, with parameters adjusted on the fly. Scripting capability by sequential lookup table read-out is supported.


Configured as a DC power-supply, the TEC-1163 can handle current and voltage settings. In the remote-control case, temperature data may be passed on to be processed by the host.

Configurable parameters further include sensor linearization (Pt100 / Pt1000) and Steinhart-Hart modeling (NTC), temperature acquisition hardware calibration, Peltier element modeling, PID controller auto tuning, nominal temperature ramping, current, voltage and temperature limits, error thresholds, etc. Please refer to the TEC Controller User Manual (Document 5216) for further information.

TEC Controller / Peltier Driver up to ±25 A / up to ±56 V

TEC-1163

HW v1.20

High Resolution Sensor Type:

NTC: By default, we mount an NTC1M. If you require an older version (NTC18K, NTC39K or NTC56K), please write which one you need in the comment section of your order or contact us: contact@meerstetter.ch.

Thermocouple:

To use our TEC Controllers with thermocouples type K, you need a TCI-1181 in addition to the TEC Controller with a VIN1 or VIN2 High Resolution Sensor Type configuration.

Display Unit:

It is possible to connect a small or big OLED 2x16 / 4x20 character display directly to the X11 connector of the device. Please visit the DPY-111x product pages on our website for further information.

Customization:

Many hardware and software features of the TEC-1163 are customizable upon request. Please contact Meerstetter Engineering with your enquiry.

Meerstetter Engineering GmbH Schulhausgasse 12 3113 Rubigen, Switzerland

Phone: +41 31 529 21 00 Email: contact@meerstetter.ch Website: www.meerstetter.ch

Document Number: 5285C (18 October 2024)

Meerstetter Engineering GmbH (ME) reserves the right to make changes without further notice to the product described herein. Information furnished by ME is believed to be accurate and reliable. However typical parameters can vary depending on the application and actual performance may vary over time. All operating parameters must be validated by the customer under actual application conditions.

9

TEC-1163

HW v1.20

TEC Controller / Peltier Driver up to ±25 A / up to ±56 V

Change History

Date of change	Version	Changed/ Approved	HW-Ver- sion	Change / Reason
6 July 2023	Α	HS / ML	v1.10	Document Created
13 December 2023	В	LS/MR	v1.20	Add: Front Page
18 October 2024	С	XF / ML	v1.20	Add: New Main Feature: Measurement Inputs are freely assignable to any Output Channel
				Add: New Main Feature: Bipolar output channels can be split into unipolar channels
				Add: "Unipolar current per channel" and "Unipolar voltage per channel" specifications in "Electrical Characteristics" section
				Add: "Max Input Current (I _{IN})" specification in "Electrical Characteristics" section
				Mod: Specified that the RS485 Data Interface only supports Half-Duplex communication
				 Del: "Important note" regarding GPIO 9/10 and Low resolution temp. measurement 3 not being available removed as they are available as of firmware v6.00

Document Number: 5285C (18 October 2024)