

Advanced OEM Laser Diode Driver with Laser Power Control [LPC optional]

Description:

The LDD-1137 is a specialized laser diode driver, able to precision-drive laser diodes in continuous and pulsed operation. New emerging technologies like eGaN FETs enable faster pulses, improved wave forms and better efficiency. A new processing core enables a faster processor connection to the powerful FPGA, more interfaces, more precise timing, additional functions and much more, while still maintaining a 1.5 mA resolution with much higher current and keeping a very low output ripple.

Equipped with optional light measurement circuitry, the LDD-1137-LPC can also be operated as a Laser Power Controller (LPC).

The LDD-1137 offers various safety features, including an input for laser diode temperature monitoring. They are fully digitally controlled; their firmware is upgradeable to offer various communication options and to meet specific customer requirements.

Features

Input Characteristics:

DC Input Voltage: 18 to 75 V

Output Characteristics CW Operation:

- Voltage: up to 70 V
- Current: up to 75 A (>60 A for a prolonged period may require additional cooling)

Main Features:

- Lookup Table with up to 64000 Samples for arbitrary current wave forms
- Error: Ultra-Fast Switch-off for optimal LD protection
- Configuration / Diagnosis: on PC (via USB / RS485 / Ethernet / CAN)
- Dimensions (L x W x H):
 118 mm x 171 mm x 48 mm
- Efficiency: >96 % (@ 50 % Duty cycle)
- Cooling: over Base Plate

Power Stage:

- Output Current: 0-75 A, ~0.2 % Ripple Parallel operation of multiple devices on request
- Temperature Coefficient, Typ: 20 ppm/K
- CW Current Resolution: 1.5 mA

Pulse Version:

- Pulse Generation: CW Chopping
- Pulse Rise Time: < 1 μs possible (Load dependant)
- Pulse Frequency: TBD

Interfaces:

- USB 2.0, Ethernet
- RS485, CAN, SPI, I2C
- Pulse Input
- Interlock (Enable)
- Analog Input

Laser Power Control (LPC): [LPC option]:

- CW LPC: Configurable PID
- Start-up phase: Fully parameterizable

Important Note:

The following features will be added with a future firmware update, but are not yet useable:

- CAN, I2C, SPI, Ethernet Interface
- LPC, temperature input

Absolute Maximum	Ratings
Supply voltage (DC)	80 V
Supply current (DC)	70 A
Output current	80 A

Operating Ratings		
Temperature	0 – 70 °C	
Humidity	5 – 95 %,	
,	non-condensing	

Warning

This is a high-power device.

Only operate this device in an enclosure.

Take necessary precautions to protect the operator.

Electrical Characteristics

Unless otherwise noted: T_A = 25 °C, U_{IN} = 24 V, R_{load} = 3.3 Ω

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
DC Power S	upply Input:					
U _{IN}	Supply voltage		18		75	V
U _{IN} Ripple	Ripple tolerance	U _{IN} never below U _{IN} min or above U _{IN} max			300	mV_{PP}
	1					
Output:						
l _{OUT}	Current range		2*		75	Α
U _{OUT}	Voltage range	$V_{IN} = 75 \text{ V}$	0		70	V
I _{OUT_RIPPLE}	Current ripple	lout > 2 A		TBD		mA
I _{OUT_RES}	Current resolu- tion	Driver		1.5		mA
V _{OUT_LIMIT}	Output voltage			TBD		V
Pout	Output power	V _{LD} = 7 V, additional cooling			5000	W
f _{CW}	Current change	For L _{Load} <100 nH, higher f _{CW} are possible		TBD		kHz
I _{OUT_SLOPE}	Current slope limit	I _{out} > 10 A		TBD		A/ns
	racteristics:		1			1
η50%	Power efficiency	@ 50 % load		96		%
η100%	Power efficiency	@ 100 % load		98		%

^{*} Operation below this value is possible but the output current and measurement may show offsets outside of the specifications.

Platform Bus Connector (PBC) X7

Unless otherwise noted: $T_A = 25~^{\circ}C$

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
GPIO 1-8	Characteristics:					
U _{IH}	Logic high input threshold		2.35			V
U _{IL}	Logic low input threshold				0.9	V
U _{IMAX}	Absolute limit input voltage		-0.5		3.6	V
Output C	haracteristics:					
U _{ОН}	Logic high output voltage		2.9			V
U _{OL}	Logic low output voltage				0.4	V
Rs	Series Resistor			100		Ω
Output C	haracteristics GND:					
I _{max}	Absolute limit output current	Total GND Output (Fused)			±375	mA

LDD-1	137
HW v1	.20

ESD Prote	ection:			
V_{PP}	ESD	IEC61000-4-2 Level 4,	18	kV
		Contact Discharge		

Auxiliary Communication and GPIOs (AUX) X10

Unless otherwise noted: $T_A = 25$ °C

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
	aracteristics GPIO TT	L 1 and 2:	•			
U _{IH}	Logic high input threshold		4.7			V
U _{IL}	Logic low input threshold				1.8	V
U _{IMAX}	Maximum input voltage		-0.5		7	V
Input Cha	aracteristics Analog I	n 1V:				
V _{AN}	Input voltage range	Analog input	0		1	V
BW	Bandwidth	Analog input		10		kHz
R _{IN}	Input Resistance			10		kΩ
Input Cha	aracteristics Analog I	n 5V:				
V _{AN}	Input voltage range	Analog input	0		5.3	V
BW	Bandwidth	Analog input		10		kHz
R _{IN}	Input Resistance	<u> </u>		23		kΩ
Input Cha	aracteristics Analog I	n 10V:				
V _{AN}	Input voltage range	Analog input	0		10	V
BW	Bandwidth	Analog input		10		kHz
R _{IN}	Input Resistance	9 .		37		kΩ
Output C	haracteristics GND:					
I _{max}	Maximum output current	Total GND Output (Fused)	0		±375	mA
Output C	Output Characteristics 5V:					
I _{max}	Maximum output current	5V Output (Fused)	0		±375	mA
ESD Prot	ection:					
V _{PP}	ESD	IEC61000-4-2 Level 4, Contact Discharge		18		kV

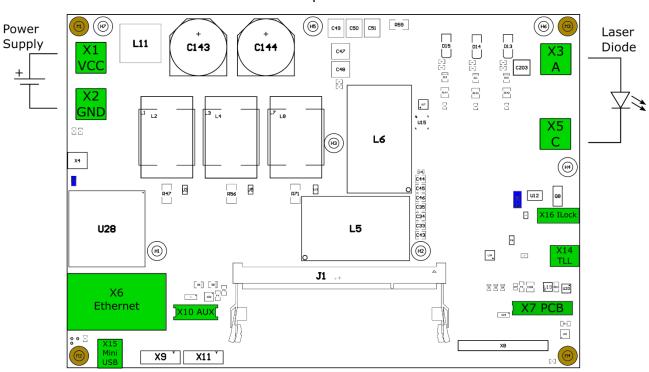
LDD-1137 HW v1.20

Mini USB Connector X15

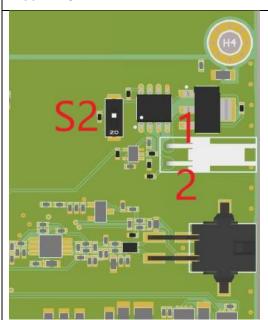
Unless otherwise noted: $T_A = 25$ °C

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Input Cha	racteristics:					
V _{IORM}	Maximum Working				560	V
	Insulation Voltage					

Interlock Connector X16


Unless otherwise noted: $T_A = 25$ °C

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Input Cha	Input Characteristics Interlock:					
V _{IAct}	Interlock active in- put voltage range	Voltage range which is detected as active input	3		30	V
V _{IORM}	Maximum Working Insulation Voltage				630	V

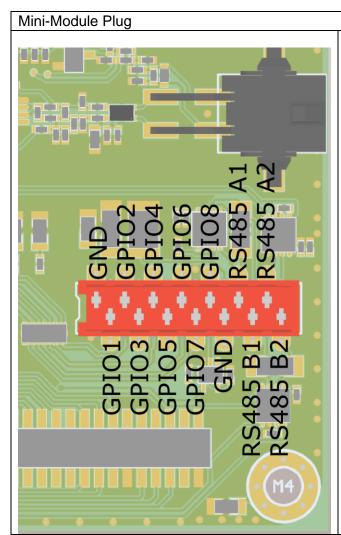

Connectors

Top view

Interlock Connector X16

ILock X16

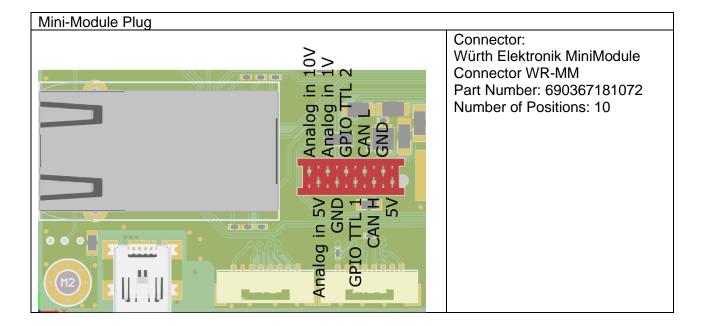
To enable the LDD apply a voltage between 3V and 30V between the Interlock + and Interlock – Pins. The Interlock Pins are galvanically isolated from the LDD.


The DIP-Switch S2 can be switched ON to override the Interlock functionality.

Connector: Molex 0022013027

Pin nr.	Name	Description
1	Interlock +	Interlock positive connection
2	Interlock -	Interlock negative connection

Pin Configuration Platform Bus Connector (PBC) X7


Connector:

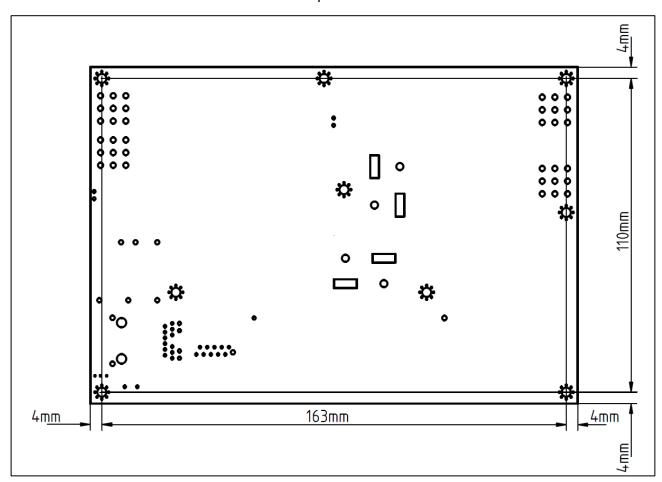
MICRO-MATCH SMD FTE Part Number: 8-188275-4 Number of Positions: 14

Centerline (Pitch): 1.27 mm [.05 in]

Pin nr.	Name	Description
1	GND EXT	Ground connection
2	GPIO 1	General-purpose input/output Pin 1
3	GPIO 2	General-purpose input/output Pin 2
4	GPIO 3	General-purpose input/output Pin 3
5	GPIO 4	General-purpose input/output Pin 4
6	GPIO 5	General-purpose input/output Pin 5
7	GPIO 6	General-purpose input/output Pin 6
8	GPIO 7	General-purpose input/output Pin 7
9	GPIO 8	General-purpose input/output Pin 8
10	GND EXT	Ground connection
11	RS485 A1	RS485 interface nr. 1A (TX-/RX- or D-)
12	RS485 B1	RS485 interface nr. 1B (TX+/RX+ or D+)
13	RS485 A2	RS485 interface nr. 2A (TX-/RX- or D-)
14	RS485 B2	RS485 interface nr. 2B (TX+/RX+ or D+)

Pin Configuration Auxiliary Communication and GPIOs (AUX) X10

Pin nr.	Name	Description
1	5V	5V Output
2	GND	Ground connection
3	CANH	CAN High
4	CANL	CAN Low
5	GPIO TTL 1	General-purpose input with TTL Level
6	GPIO TTL 2	General-purpose input with TTL Level
7	GND	Ground connection
8	Analog In 1V	Analog Input 0-1V range
9	Analog In 5V	Analog Input 0-5V range
10	Analog In 10V	Analog Input 0-10V range


Mini USB Connector X15

The Mini USB Connector X15 can be used to communicate with the LDD using the meCom communications protocol or the Configuration Software. It is electrically isolated.

Dimensions

Top View

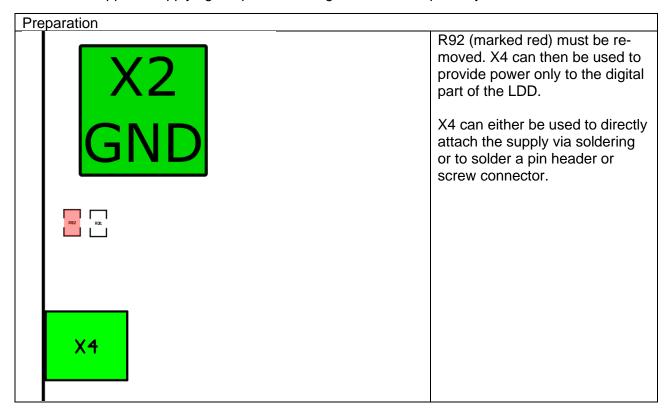
Mounting holes in the corner are 3.2 mm holes for M3 screws.

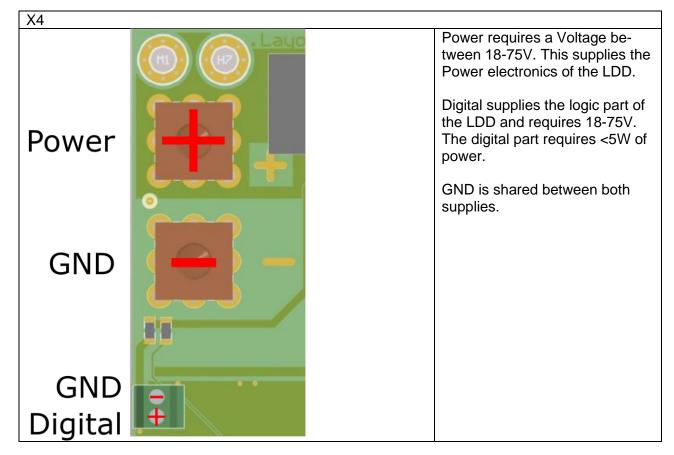
LDD-1137 HW v1.20

Pulse and CW comparison

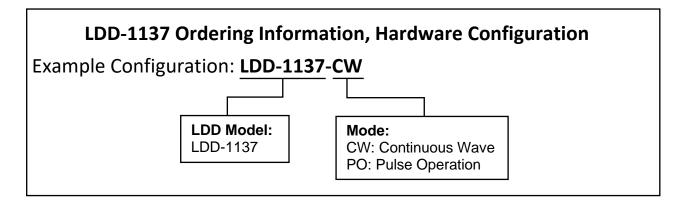
	CW	Pulse
CW operation	Yes	Yes
Signal generator Pulses	Yes	Yes
CW chopping	No	Yes
Ripple	Less	Normal

The Pulse version is recommended if risetimes below 100 us are desired.


The Pulse version can be operated exactly like the CW version, or by using the dedicated Pulse functions. The dedicated pulse functions utilize CW-chopping to achieve faster pulses. The Pulse version also contains less output filters, which enables faster risetimes while slightly increasing the ripple.


Note: the graph in the Configuration Software displays the high-side current measurement, therefore chopped pulses cannot be observed properly in the graph as the current keeps flowing internally during chopping.

Separate supply for Power and Digital parts


The device supports supplying the power and digital sections separately.

LDD-1137 HW v1.20

Ordering Information

Meerstetter Engineering GmbH Schulhausgasse 12 3113 Rubigen, Switzerland meerstetter 🌂 engineering

Member of Berndorf Group

+41 31 529 21 00 contact@meerstetter.ch Website: www.meerstetter.ch

Meerstetter Engineering GmbH (ME) reserves the right to make changes without further notice to the product described herein. Information furnished by ME is believed to be accurate and reliable. However typical parameters can vary depending on the application and actual performance may vary over time. All operating parameters must be validated by the customer under actual application conditions.

LDD-1137 HW v1.20

Change History

Date of change	Doc/Ver- sion	Changed / Approved	Change / Reason
4 March 2021	В	PV / MR	Add Change History
			First prototype measurement data inserted
			New layout template used
2 December 2021	С	PV/RS	New HW v1.20 changes
			High power warning
			Measurement plots